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Multiplicity in Cascade Transmission
Line Synthesis—Part I

H. SEIDEL, MEMBER, IEEE, AND J. ROSEN, MEMBER, IEEE

Abstract—The synthesis of a stepped equal-length transmission
line structure to a given insertion loss function sometimes leads to a
multiplicity of untrivially related solutions. The philosophy of syn-
thesis is explored to understand this lack of uniqueness and a new
statement of sufficiency and necessity of synthesis is developed
based only on an insertion loss statement. The conditions are devel-~
oped for nonuniqueness to occur and it is observed that these condi-
tions are particularly prevalent in transmission line couplers. It is
precisely the nonuniqueness of couplers that accounts for both the
asymmetric and symmetric realizations. The symmetric coupler is
generally the more difficult of the two to design and both exact and
approximate methods of design are given in this case.

I. INTRODUCTION
TRANSMISSION line synthesis characteristically

associated with quarter-wave transformers and

band-pass filters [1], [2] has recently been ex-
tended to coaxial couplers [3]-[5]. In independent
studies of the coupler synthesis problem it became clear
to the authors that the bridge between asymmetric and
symmetric couplers lay in the nonuniqueness of the
synthesis of a transfer function by means of an equal
section length transmission line cascade.

This paper has two major purposes. Its first intent is
to explore the source of nonuniqueness and to provide
examples of multiple synthesis. In exploring this source
we shall seek out those criteria which lead to classes
of structures possessing unique synthesis. The second
major purpose of this paper is the further exploration
of realizability criteria towards the end of demonstrat-
ing realizability of all the solutions of synthesis. This
investigation leads to the following simple statement of
realizability in terms of cascade transmission line syn-
thesis:

Let 8 be the electrical length of a constant relative impedance
transmission line where all real positive characteristic impedances
are realizable. Then, any even polynomial loss function L (¢ sin )
may be realized as a cascade of transmission lines of equal section
length @ to within an added terminating transformer if, and only if,
L (¢ sin ) 21 for all real values of 4. The terminating transformer
vanishes when L(0)=1.

The results of the theory show that most of the filter
and quarter-wave transformer designs fall into the class
of structures having unique synthesis. This class, we
find, is characteristic of networks having optimal trans-
mission properties over a band. Couplers, on the other
hand, are designed to produce a wide band of constant
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reflection. It is this feature which produces multiplicity
and accounts for the evolution of the two coupler types;
the symmetric and asymmetric structures. Where flat-
ness of coupling is the major concern, it is shown that
the asymmetric coupler has superior features to those
of the symmetric device. The flat 90° differential phase
of the coupled and transmission ports of the symmetric
coupler give it unique advantages, however, and may be
the dominant feature of design.

The paper has ten sections divided as follows: Section
I demonstrates synthesis of any even loss polynomial
in sin § meeting the restrictions of the statement of
realizability. Section III proves realizability by a root
locus procedure and an equivalence to positive real func-
tion theory is given in Section IV. Section V explores
multiple synthesis and provides criteria for uniqueness.
Section VI examines the synthesis problem of couplers
and shows the general existence of multiple solutions for
three- or more section structures. It shows qualitative
reasons why asymmetric structures are flatter in cou-
pling than are symmetric structures. Section VII ex-
plores two wvariants of four-section asymmetric design
and compares differential phase of the two qualitatively
and quantitatively. Section VIII deals with the three-
section symmetric coupler and shows that there exists
a three-section asymmetric coupler with an identical
transfer function. Both an approximate and an exact
design procedure are given. An approximate design is
also indicated for a five-section symmetric coupler.
Section IX takes a concluding look at two aspects of
transmission line structures. The first relates to the
equivalence of filters and quarter-wave transformiers
using the realizability statement, and the second is con-
cerned with the applicability of asymmetric couplers to
mixers. Section X contains brief comments about the
literature with respect to some aspects of the present
paper.

The paper will be presented in two parts, the first
containing Sections [ through V. Theintent is to permit
two self-contained portions; the first dealing, essentially,
with general analysis and the second providing more
specific results.

I1I. SyNTHESIS PROCEDURE

The synthesis procedure, as well as the demonstration
of realizability, is an extension of that employed in [2].
In that paper an insertion loss function L was chosen
to be of the form 14 R,%(sin #), where R, is an even or
odd polynomial of degree #n. Here we shall consider the
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more general problem where L(7 sin ) is any even poly-
nomial function of sin § subject only to the condition
L>1 for all real values of 8. The procedure bears re-
semblance to a Darlington [6] synthesis but is modi-
fied by the use of radical factors as introduced in [2].

Let us introduce the complex variable p =14 sin § which
operates for distributed structures in a manner remi-
niscent of the fashion in which p =4w operates for lumped
elements. The insertion loss function L(p) is related to
the reflection factor k(p) as follows:

p) -1
(p)

The synthesis method requires that the right-hand side
of (1) be factored into two functions, the first being a
real function of +p and the second being the same
function of —p.

A simple means of identifying the factors of (1) is
accomplished by a root sorting process. Let p; be a
root of either numerator or denominator. If p, is real,
then the evenness of L(p) requires the existence of the
negative real root. The sorting process requires that ¢,
be associated with one factor and that —p; be associ-
ated with the other. If p; is complex the demand that
k(p) be real requires a segregation of both p; and p;*
into one of the factors with the residual roots —p; and
—p,* going into the other factor. Equation (1) then de-
composes into

k(p)R(~p) = ey

a1~ p) I (=2 — 29

k3

[ —p) L (=2 —2)

k(p)k(—p) = 2)

where a? is a real numeric factor, and where the prod-
ucts in both numerator and denominator range over all
permissible independent values of p; and p, together
with their complex conjugates. Recognizing the identity

(@ —p)(p+ )
o >
= (1 2 — 1 s 1
(+p5(p - VIF 3 N
~<p+V1+p2——L> 3)
V14 p?

we may make the following identification of k(p) in (2):

, . P
-+ 1 12 — 1 2 -
tellvits (p vite \/1+p12>
k(p) = W
T+ ( — V14 ———_>
GI]I\/ PR VIE D V14 p?

The motivation in factoring (3) as we do stems from
the desire to produce polynomial functions in terms of
both sines and cosines of some transmission line length.
If p=1sin 8, then /14 p?=cos # and (4) will be shown
to represent the reflection of a transmission line cascade.
Network stability [7] requires that £(p) have only left-
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half plane poles in the variable $/+/14p% so that all
pi/A/14p* in (4) have negative real parts. There is
no similar restriction on the zeros of k(p) so that the
choice of p; in (4) is unrestricted. It is precisely here in
this choice that transmission line synthesis may be non-
unique.t

If L(p) is a polynomial of degree 2x then, from (4),
k(p) has the following form:

M. (p) + V1 + p? Naua(p)
k(p) = R ®)
Po(p) + V1 + 9 Quaalp)
where it is assumed for the moment that M, N, P, and
Q are real even or odd polynomials of degree correspond-
ing to subscript notation. Since

(=D)"(M(p) = V1 + p* Nuoa(p))

E(—p) = 6
=9 (—D™Pa(p) — V1 + p20ua(p) ©
we have from (1), (5), and (6)
(=D)"(M2(p) + (1 + p2 N2 1(p))
k k(— =
(PH=2) (=D 22() — (1 + pD02(p))
L{p) — 1
= -, 7
L(p) @

Equation (7) produces the result
M2(p) — (L + p)N2a(p) = (=)L) — 1) (8)
PAp) — (14 p2)0:2(p) = (—1)"L(p). )
Equation (5) may be made to yield the impedance

function of the terminated four pole through the rela-
tionship Z=1+k/1—k and we find, from (5),

— (Pn + Mﬂ) + \/1 + PZ (Qn—l + Nn—l) .
V1 + 2 (Quet — Noo) + (P — M)

Z(p) (10)

Given a transfer matrix
(e »)
C D

for a four pole it is well known that the input impedance
to the four pole terminated by a unit load is given by
Z=A+B/C+D. One is then led easily to the tentative
recognition of the transfer matrix to be either of the
form

o [ (Put-22)
"LV Q= V)

or of the form

V14 p? (Qn~1+Nn_1):] (11)
(Pn"‘Mn)

(PotMy)

Tn= [:\/1+P2 (Qn—1+lvn—1) v } ) (12)
V142 (Qra— Nooy)

(Pn_Mn)

! These features result directly from a root locus procedure. Ac-
tually, no direct appeal need be made to PRF theory, but com-
patibility with it is established in Section IV.
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The determinant of T, in (11) is
(P2 = M) = (L + (01 = Nitn) = (1) (13)

where the equality stems from (8) and (9) and the de-
terminant of 7, in (12) is (—1)»*+% Since the determin-
ant of the transfer function of a reciprocal four poleis
unity, (11) is to be identified with a structure having an
even number of elements while (12) corresponds to an
odd element structure. This identification is also appar-
ent from the requirement that major diagonal terms be
real and minor diagonal terms imaginary.

Equations (11) and (12) do indeed possess the neces-
sary form for m-element transmission line structures.
Recognizing that a single transmission line of character-
istic impedance Z possesses the transfer matrix

Zp‘l

«/ﬁ?J

Vit p?

» (14)
VA

it is evident that (11) and (12) go into one another via
matrix multiplication with (14), corresponding to the
addition of another section to the four pole. Since (12)
and (14) correspond for n =1, proof by induction is com-
plete that (11) and (12) have the proper form to repre-
sent an equal-length transmission line cascade.

Given an appropriate insertion loss function we shall
now demonstrate the synthesis method. We arbitrarily
take # odd and expand (12).

T = [\/m(dn—lpn_l + an—3P"_3 + T

CnP" + Cn~2P"_2 + et

Assuming #>1 the leading term of the determinant of
(15) is zero since the determinant is identically unity.
Hence

a'n—ldn—l — bnﬁn = 0, "W > 1. (16)

If (15) implicitly contains # transmission lines, we
may remove one by appending a line length —#8 on the
left having some characteristic impedance Z. Perform-

ing this operation on (15) we have

(@1 = Ze)pmt' 4 O(p™H)

Tn——l = e An—1
el

In view of (16) a choice of

b

dn——l

Ap-1

zZ

(18)

Cn

provides for the reduction of the respective components
of T, to polynomials of one degree less than those for
T
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We may continue the procedure of removing trans-
mission lines until #=0 for which we obtain

()
0 d,

and which clearly represents a transformer since aydy=1.
If as a special assumption we require that L(0)=1,
namely that there is no reflection when the transmission

lines are of zero length, then ¢y=d, and synthesis may
be accomplished by transmission lines only.

To (19)

ITI. REALIZABILITY

It was assumed, in relation to (5), that M,, N,_;, P,,
and Q,_; were all real polynomials and that there had
been no cancellation of common factors between numer-
ator and denominator. Because it is necessary that the
various matrix terms of (11) and (12) be real in p, we
are obliged to show that this assumption is, indeed, cor-
rect. To do this we shall now state and prove two prop-
erties of the loss function under the two assumptions
that L(p)>1 for |p| <1 for p on the imaginary axis
and that L(p) be an even polynomial. These assump-
tions follow, respectively, from conservation of energy
and reciprocity.

A) The number of real roots? of L(p) and L(p)—1
differ by a multiple of four.

B) The leading coefficient of L(p) has the sign
(—1)»/2 where #, is the number of real roots of
either L(p) or L(p)—1.

bn i bn——? n=2 te
) Pt busp ™ + jl (15)

VI F 92 ducsp™t + dusp™ 4 - - +)

To prove property A consider the loss function
L(p) —a, where a is a constant which ranges in value
from zero to a maximum of one. For a <1 there are no
roots on the imaginary axis for [p[ <1 by assumption.
There are two possible ways in which roots may leave
the real axis as o varies:

a) The roots on the real axis merge in pairs and then
enter into the complex plane to form quartets of
complex roots (i.e., p;, p.%, —p:;, —b.5).

VI (b — Zdui)p™ + O(p™ )]

bn ‘(17)
<dn—1 — E)Prr!—l + O(Pn-—-l)

b) The roots pass from the real to the imaginary axis
through the point at infinity.

This last mechanism, however, is absurd since a root
passing through the point at infinity implies a vanishing
of the leading coefficient of L(p) —a as e varies.

2 Roots at zero are considered real roots in all subsequent dis-
cussions.
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The first mechanism of real root loss is, therefore, the
only permissible one for « less than, and arbitrarily
close to, unity. For a=1, even clusters of roots may ap-
pear on the real axis at the origin since roots of L(p) —1
are permitted on the imaginary axis for l p] <1. How-
ever, this does not constitute a real root loss. Since the
only mechanism of real root loss is through complex root
quartets, property A is proven.

Property B is also simply demonstrated. Since L(p)
is an even polynomial it has the representation

L(p) = II K(@* — a®)(@* + 02 (#* — o) (p* — &*?)
£,7.k
where a; are the real roots, 7b; the imaginary roots, and
¢x the complex roots. As a particular case of the assump-
tions on L(p), L(0)>0. This requires that K have the
sign (—1)*/2 where #, is the number of real roots.

We may now prove the desired result that the various
polynomials in (5) are all real. In considering either
numerator or denominator in (4), there are no complex
terms introduced by a complex root p; since there is al-
ways present another root p;* to restore reality. In the
particular case of the numerator, roots along the im-
aginary axis for I pl <1 are formed from a double set
because of the non-negative nature of L—1 for that
region. It is thus possible in sorting out the respective
roots of k(p) and k(—p) to assign one such imaginary
root and its complex conjugate to one of the factors and
the other pair of roots to the other factor.

Equation (4) becomes imaginary with the introduc-
tion of those imaginary roots in either numerator or
denominator for which |p| >1. Since these roots are, in
general, simple there is a root assignment of one im-
aginary root to k(p) and its negative to k(—p). These
roots are now unpaired and lead to imaginary coeffi-
cients in (4) since 4/14p:% is imaginary. The complete
coefficient is real or imaginary in relation to the number
of pairs of imaginary roots for which ! p‘ >1. In par-
ticular either numerator or denominator of (4) is, re-
spectively, real or imaginary as is the quantity

ai (na—nil)/2

where #; is equal to the total number of imaginary roots
and where #;/ is the number of imaginary roots for
Ipl < 1. Recalling that imaginary roots ]ﬁl <1 are
double and are paired with their complex conjugates,
n. is a multiple of four. Further, from (2) and proper-
ties A and B, the leading coefficient of either numerator
or denominator has the same sign as

sgn (—1)ra? = (=)~

where, unambiguously, #. is the number of real roots of
either numerator or denominator. Taking all the above
into account, either numerator or denominator is real
or imaginary as is the quantity

(_. 1) @ntnrtni) /4,
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Since #,+#;=2n (mod 4) we obtain the final result that
both numerator and denominator are real. Hence, M,
Ny, Py, and Q.3 are all real polynomials.

Applying the matrix reduction technique associated
with (17) one may now find an array of characteristic
impedances which correspond to the insertion loss func-
tion within a transformer. Since all of these impedances
are real, the demonstration of realizability becomes that
of showing that all the impedances are positive. We
shall employ a root locus procedure?® to show realizabil-
ity similar to that employed in [2].

The root locus procedure starts with the root loca-
tions of a structure which is known to exist. Always
maintaining the fundamental condition that L(p) —1>0
for imaginary roots ]p] <1, the roots of L(p)—1 are
varied continuously from that array corresponding to
the existing structure to that array corresponding to the
loss function to be synthesized. If a continuous locus
exists and if the structure is continuously realizable
along the root locus, then the synthesis is realizable.

Certainly an # section structure exists giving us an
admissible array of roots corresponding to some L{p)
—1. Let us now consider root loci of L(p) —1 which are
restricted as follows:

1) All roots maintain reflection symmetry about both
real and imaginary axes.

2) Roots traveling on the imaginary axis for Ip[ <1
must remain paired (double).

3) Roots on the imaginary axis for I pl >1, or real
axis roots, may be simple.

4) Roots of any multiplicity may be interchanged be-
tween the real and imaginary axes through the
point at infinity.

Through the preceding rules one always maintains the
evenness of the polynomial L(p) together with a single
sign of L(p)—1 on the imaginary axis for [p{ <1.1Itis
also evident that every consistent root pattern of L(p)
—1 is permitted by the foregoing loci.

Ttis implicit in the preceding that the sign of the lead-
ing coefficients of L(p) —1 will always be maintained
equal to (—1)"7/2, There is no discontinuity in changing
this sign as roots pass through infinity since such roots
imply a vanishing of the leading coefficient of L(p) to
a degree consistent with the multiplicity of roots hav-
ing passage. Hence L(p)—1 remains non-negative on
the imaginary axis for {p' <1 for all possible loci.

We have shown that admissible loci exist maintaining
both the even and non-negative character of L(p) —1
which carry us from the root array of a physically exist-
ing structure to the root array for a specific L{(p)—1.
We may, therefore, continuously construct an array of
real characteristic impedances according to (17) where,

3 Root locus procedures find frequent application in control
theory. See, for example, J. G. Truxal, Automatic Feedback Control
System Synthests. New York: McGraw-Hill, 1955.
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at least in the neighborhood of the initial points of the
loci, every impedance is positive. If one or more im-
pedances change sign along the root loci, each must
first pass through a value of zero or infinity. [t is easily
shown that no multiplicity exists of zero or infinite
characteristic impedance sections which may produce
other than an infinite insertion loss for finite values of .
Since this contradicts the finite polynomial nature of
L(p), there may be no sign changes, and the network, is
realizable.

We have now established the sufficiency of the syn-
thesis procedure and it remains for us to demonstrate
that this procedure exhausts all possible syntheses. We
have shown in Section IT by an inductive proof that (11)
and (12) represent the necessary matrix forms for an
equal line length structure. Equation (13) describing a
unit determinant condition is necessary from considera-
tions of reciprocity. Equation (9) describing the loss
function is a direct consequence of (11) or (12), and (8)
derives directly from (9) and (13).

Either (8) or (9) may be written in the form

(4a(p) + V1 + p2 Baa(p))
<(4.(p) — V1 + p? Boa(p)) = Fau(p)

where Fy, is an even polynomial of degree 2#. Trans-
form to the variable { =~/(1+2%)/p so that we have a
new equation of the form

(an(g‘) + .87»——1(;))(“”(() - .Bn—l(!:‘)) = ¢‘2n(§‘)

where @y, Bn_1, and ¢a, are appropriate odd or even poly-
nomials, respectively. Since the linear factors of ¢, are
unique, only a finite number of organizations of » factor
pairs are permissible compatible with the form of the
left-hand side of the equation. The left-hand side is the
product of complex conjugate factors of degree # and
synthesis of (11) or (12) requires that just one of these
factors be chosen. The synthesis procedure employed
exhausts all permissible arrangements of the # linear
factors, and no other synthesis is possible.

IV. ConnEcTIiON WiTH PRF THEORY

A root locus demonstration of realizability was em-
ployed in the Section III because it tied the examina-
tion of realizability to the loss function itself and be-
cause it meaningfully retained the variable p =1 sin 8 in
which the problem is specified. One is then led to direct
statements about the admissibility of the loss function
itself, namely the function specified for synthesis, as
opposed to statements relating to impedance functions
in a new variable { = —1 cot 8 as is required by Richards’
theorer [7] and the use of positive real function theory.

We shall show, nevertheless, that the root locus
demonstrations employed are consistent with PRF the-
ory. It is to be recalled that the root focus method re-
quired some initial structure to establish an initial root
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array for L(p) —1. Let us start with an » section equal
impedance cascade structure which has the transfer
matrix

¢Z sin #nf

cos nf
T = ( . (20)
i

—sinwuf  cos nd
V4

and which, with a unit termination, produces the reflec-

tion factor

7 1\ |

—\Z — — ) sin n#

2 VA

k= : . (21)
% 1N
cos nf + —-(Z + »—) sin nf

2 A

Let us consider the poles of & which correspond to the
choice of appropriate roots of L(p) in (4). The poles 8,,
are found from the equation

1
Z4—=2
VA
€i2n0m —

N (22)
Z+—=+4+2
+ o+

From (22) we obtain

1/n

fm = — 1 cotl, = (23)

i/n

1
Z+-——2
Z

Ei21rm/n

1
Z4+ =42
z

where m is an integer. From (23)

1 2/n
Z4— =2
Z
— 1
1
Z4+—+2
Z
<0

Re (fm) = (24)

1/n 2

1
Z+— -2
z

ei?wm/n

1
Z+—+2
z

—1

so that all poles of % are in the left hand of the { plane.
In terms of the variable p the quantity { is given as

_ Vit
4

¢ (25)
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¢ is imaginary for that range in which p isimaginary and
[p| <1. Since this is exactly the range for which L(p)
>1, there may be no roots of L(p) and, consequently,
no poles of k on the imaginary { axis as the roots of
L{p) —1 trace their respective paths. Since the point at
infinity of { corresponds to p =0 where, again, there is
no root of L(p), & may have no poles in the { plane ap-
proaching infinity. The poles of k& in the { plane which
were initially all in the left-half plane are trapped in the
left-half plane since they may not leave either through
the imaginary axis or the point at infinity.

The imaginary { axis, as indicated, corresponds to the
range « > L >1 so that

| & = (26)

Since % is analytic in the right-half plane and has a
magnitude less than 1 on the imaginary axis, it has a
magnitude less than 1 everywhere in the right-half
plane. Thus Z=(14+%)/(1—%) is a positive real func-
tion for all admissible root locations of L —1.

Inverting (25) we find p=1/+/¢{>—1. Substituting in
(10) and multiplying numerator and denominator by
(¢2—1)"2, we find
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2) With the exception of imaginary roots for which
|p| > 1, the roots of k(p) and k(—p) have a mu-
tual reflection symmetry about the imaginary
axis.

3) For every imaginary root in k(p) a complex con-
jugate root is to be found in E(—p).

The selection rules do not enforce a unique choice by
any means since one may take any root p;, and its con-
jugate if needed, and exchange it with its negative —p..
Root locus considerations as employed earlier show that
realizability is not compromised and the loss function
remains invariant.

Since nonuniqueness is the rule and not the exception
we should like to seek the cases in which root inversion,
namely the transformation of p; to — p,, leads either to
trivial change, or to no change at all, in structural syn-
thesis. In a first examination all the roots of k(p) are
inverted and we seek to determine the effect. In a second
study we shall attempt to determine under what cir-
cumstances a network is insensitive to the inversion of
any number of the roots of k(p).

A. Complete Root Pattern Inversion

While it might be supposed that the transformation

Z(5) =
(9, e

Letting m; 2 stand for a real even or odd polynomial in
¢ and 7,2 stand for an odd or even polynomial, (27) has
the form

From the unity determinant condition of (13)

mimy — ning = (—1)"C2(¢2 — )= (28)

where C is any real number multiplying numerator and
denominator of (27).

Z(%) is, therefore, positive real and, by (28) also meets
the second of Riblet’s two conditions for cascade trans-
mission line realizability [1]. Since every root array
corresponding to the loci of L(p) —1 leads to a realizable
structure, the endpoints of the loci are also realizable,
completing the statement of realizability.

V. MuLtIpLICITY IN Loss FUNCTION SYNTHESIS

Network determination corresponding to a given loss
function depends on the specific choice of half the num-
ber of roots of L(p) —1 to form the reflection function
k(p). The roots chosen obey the following selection con-
ditions.

1) With the exception of imaginary roots for which
|p| >1, the roots of k(p) have reflection sym-
metry about the real axis.

(2 = )"2(Po + M) + 56> = DOV 2(Ques + Noo)
1)O=DI(Quy — Npt) + (2 = DBy — M)

27)

of a root pattern of k(p) to one having an inverted pat-
tern might lead to trivial results, this is not necessarily
the case. Let us consider the transformation in which all
roots of k(p), p;, transform into their negatives. The
numerator of (5) becomes

(=D"(Ma(—=p) + V1 + p* Nooa(=9))
= Mu.(p) — V1+ > Nas(p)

and is characterized by the transformation N, i(p)
——N,1(p). Equation (12) shows that a change of sign
of N,_1(p) interchanges the major diagonal terms for #
odd, while the minor diagonal term of (11) interchanges
for # even. As we shall show now, this shifting of matrix
terms implies that total root inversion reverses the odd
section structure and produces the reverse dual of the
even number section structure.

Since k(p) is defined by the square of its magnitude,
it is indeterminate to within a minus sign. A reflection
function —k(p) corresponds to the dual of the structure
corresponding to k(p), where the dual interchanges the
roles of electric and magnetic fields. If electric and mag-
netic fields transform into one another, then the terms
of the dual transfer matrix is obtained by an inter-
change, respectively, across both diagonals; A=2D,
BeC. A network reversal only interchanges the major
diagonals so that A=D. A minor diagonal interchange
then corresponds to the reverse of the dual.
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If the original root pattern provides a given network
and its dual then, irrespective of # even or odd, com-
plete root inversion provides both the network reverse
and reverse dual. Let it be assumed that the prototype
network contains a terminating transformer N. If we
recognize the transformation which carries a trans-
former from the left of an impedance array to the right
of the array by multiplying each characteristic imped-
ance by the square of the transformer value, we have the
results of Fig. 1.

It is all but trivial that an array of transmission lines
of a given characteristic impedance has the same inser-
tion loss as an array having the identical values of ad-
mittances, and it is similarly trivial that a network un-
der reversal has the same insertion loss as the forward
network. In the case of N =1, therefore, no information
of major value is contained in the inverse pattern over
that of the original pattern.

The case of N1 is, however, of more important
interest. The networks containing terminating trans-
formers are all filters possessing the same loss character-
istics. The transformer combined with the load repre-
sents a mismatched termination, and the array of trans-
mission lines preceding the transformer represents a net-
work providing a specified insertion loss function from
the generator into a mismatched load. In viewing both
the original network and the reversed dual network of
Fig. 1 one observes, in general, two entirely different
transmission line networks providing the same transfer
function for all frequencies into the same mismatched
load.

Under certain circumstances the network and its re-
versed dual might be identical. We now ask what these
conditions are. The transfer matrix of the reverse dual
differs from that of the prototype network by a reversal
of minor diagonal terms. Since the two descriptions must
be identical we find from (11) and (12)

N,—1=0; neven

M, = 0; nodd
L=14 M>2(p); neven (29a)
L=1-4+ 14 p>N.2:(p); = odd. (29hb)

Equations (29a) and (29b) are phrased in polynomials
M, and N,_3 which are both even. Recognizing that
14p?=cos? § both (29a) and (29b) may be combined
to yield as the necessary condition of network identity

L =1+ R2(cos 8) (30)
where R, is either an even or an odd polynomial of de-
gree n.

It is simple to understand why (30) provides the
identity of the network and its reversed dual. Since all
the roots of L—1 are double it is possible to factor
}k(jb)!2 into identical factors each containing all the
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|_ NETWORKS CORRESPONDING
TO INITIAL ROOT PATTERN

R REVERSE | NETWORKS CORRESPONDING
N® » TO INVERTED ROOT PATTERN
Zn N

Tl
_r—'__"'} EJ

REVERSE DUAL

Fig. 1. Networks corresponding to initial and

inverse patterns of k(p).

roots of R, (cos 8). Since R, is either an odd or even poly-
nomial, for every root in a factor its negative is con-
tained as well. Hence root inversion leaves k(p) invari-
ant to within a sign change if k(p) and k(—p) have
identical roots.

We define a root pattern of L —1 to be “basic” if it is
defined to within an inversion through the origin. If
L —1 has no roots at the origin then N1, and we have
previously shown that a basic pattern implies two struc-
tural realizations. However, these realizations merge un-
der the restrictions that L(p) —1 have double roots and
that k(p) and k(—p) be made to have identical roots.
Figure 2 shows a double root pattern of L—1 which,
for case (a), leads to identical roots for 2(p) and k(—p)
and, thus, in turn leads to unique realization under root
inversion, while case (b) leads to nonunique realization.

It is of interest that past realizations only have con-
sidered loss functions for a quarter-wave transformer of
precisely the form L=14R,2(cos 6) with identical root
assignments to k(p) and k(—p). Figure 1 shows an in-
version symmetry of the characteristic impedances of a
quarter-wave transformer, seen in comparing the original

network with its reversed dual, where
ZkZ,,_k+1 = Nz. (\;1)

Equation (31) is seen to apply precisely to Fig. 10 of [2].
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@ —ROOTS OF ki{p)
O —ROOTS OF k (—p}
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Fig. 2. Basic patterns leading to (a) unique,

(b) nonunique realization.

B. Unique Synthesis

Having observed invariance for one basic pattern
under root inversion, we next seek to determine under
what circumstances the basic patterns themselves are
identical. If the basic patterns are identical then there
are, at most, two essentially different structures, Further,
if the single basic pattern is invariant along the lines
discussed, then there is a unique realization.

Given a basic pattern we may shift to another basic
pattern by causing any one root p, to transform to its
negative. Simultaneously p.* transforms to its negative
if p.* is contained as a root within the pattern. The
simultaneous transformations p,——9, and p *——p*
lead to identity only if p,= —p,*, which implies that
p. is imaginary. Further !pzl <1 if both the root and
its conjugate are to be contained in the same factor k(p)
for reasons given in Section I11. Since p, = +1 is the point
at infinity in the transformation p,/+/1-}p.2, a trans-
formation of p;=1 into its negative also leads to iden-
tity.

Assume for the moment that the single roots p;= +¢
are not contained in L —1 so that there are only double
roots on the imaginary axis for —1 < —ip <-+1. There-
fore, L—1~F,2(p), where F, is an appropriate nth de-
gree polynomial. 1f the roots p,= + ¢ are contained in
L—1, then L —1~(1+4+9?) F?,_1(p). Both of these results
may be phrased alternatively as follows:

L =1+ R>(sin 6)
L =1+ R>2cos8)

(32a)
(32b)

where R,? is an even polynomial of degree 2n and where
there are % roots of R, contained in the interval — (x/2)
<0< (7/2).

We shall now associate (32a) with filters and (32b)
with quarter-wave transformers. For n even, there is no
clear distinction between (32a) and (32b) since sin 6 and
cos 0 occur to an even degree and are interchangeable.
The case of # odd is, however, clearly distinguishing. We
define a filter structure to be composed of an array of
transmission lines without a terminating ideal trans-
former or, at worst, with a transformer close to unity
turns ratio to account for a small center-band mismatch.
A filter structure is, therefore, characterized by the con-
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dition that L=1 for §=0, to which only (32a) applies
in general for # odd. A quarter-wave transformer, on
the other hand, has a terminating ideal transformer
which represents the load mismatch and is character-
ized by a lossless transformation at 8 =90°. Clearly, only
(32b) applies in general for # odd.

Equation (32Db), by its very construction, has identi-
cal roots for k(p) and k(—p) and, since it falls into the
form of (30), it can yield only one quarter-wave trans-
former construction. If we consider the mere reversal
of a structure to lead to identity, then (32a) shows a
unique filter construction for # even and a double real-
ization for # odd. This result is obtained as follows. The
double imaginary root structure of L —1, with all roots
lying in the domain IpI <1, leads to N, 1(p)=01in (4).
Equation (11) shows the even section filter to be identi-
cal to its reverse dual, while (12) shows the odd section
filter to be symmetric. Since the dual of the even struc-
ture leads to a simple reversal, no new structure results
from dualization so that the even section filter is unique.
The dual of the odd section filter is, however, a differ-
ent structure, so that there is a double realization in
that case.

With the exception of the Gaussian response func-
tion, the usual treatment in the literature on filters and
quarter-wave transformers relates to the design of
Chebyshev and Butterworth responses. The Chebyshev
polynomial has # roots over the range of —(w/2) <6
< (w/2) while the Butterworth synthesis of L —1 con-
centrates all roots at the origin. From the preceding
discussion we observe that these are exactly the condi-
tions for unique synthesis and account for the failure to
describe multiple realizations in the literature. Coupler
design, as we shall observe in Part II, requires com-
pletely dissimilar design premises to those of the filter
and quarter-wave transformers, and the nonuniqueness
of synthesis is most pertinent.

C. Invariant Properties or Multiple Synthesis

We have examined situations in Sections V-A and
V-B in which synthesis was insensitive to some degree to
root inversion. It is of interest, however, that two invari-
ant features persist in all multiple syntheses irrespective
of how radically they may differ.

1) The complex transfer function is invariant to root
choice.

2) The terminating ideal transformer is invariant to
the basic root pattern so that a quarter-wave
matching transformer may be equally well con-
structed from any of the basic patterns.

The transfer function invariance is deduced through
the relationship [ t(p) l 2=1/L(p), where t(p) is the trans-
fer function. Equation (5) shows that

1
Pu(®) + VI E 2 Ona(p)

tp) = (33)
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It is to be recalled that the denominator of (33) is
formed of radical factors of those roots of L(p), p,,
which correspond to a negative real part of p;/+/14+p 2
Since these roots are, in turn, the poles of k() which
remain fixed irrespective of the choice of the roots of
k(p), (33) is invariant to all structures having the same
insertion loss function.4

We next show the terminating transformer invari-
ance. With respect to Fig. 1 we find that a specification
of a terminating transformer in a basic pattern implies
the existence of the inverse transformer as well. The
terminating transformer is found from the insertion loss
for §=0 and is given through the relationship

4L(O0) — 1) = <N - —1~N>2 (34)

¢ Equation (33) is tantamount to a minimum phase statement.
Since L(p)— = as p— oo, the transmission function #(p) vanishes
for =1 in the { plane. One cannot, therefore, make any direct
minimum phase statements because of the nonanalyticity of In (£) in
the right-half ¢ plane.
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so that the transformer is specified to within an inverse.
Since the insertion loss is the invariant specificatiorn to
all the multiple syntheses, the transformer is an invari-
ant to the basic root pattern. One may, therefore, always
construct at least one quarter-wave transformer work-
ing into the same real impedance N? for each basic
pattern.
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Direct Synthesis of Band-Pass Transmission
Line Structures

H. J. CARLIN, rrrLow, 1EEE, AND W. KOHLER, STUDENT MEMBER, IEEE

Abstract—Realizable band-pass (zero of transmission, i.e.,
infinite loss, at dc) equiripple gain functions are constructed which
permit exact physical realization of systems consisting of cascaded
lines and stubs. The problem of the realization of a prescribed load
resistance is solved when a dc zero of transmission is present duetoa
shunt short-circuiting stub. The exact limits of realizable load resis-
tance are given for equiripple band-pass gain functions and a straight-
forward method is presented to synthesize any desired value of load
between the predetermined limits. The basis of the synthesis tech-
nique is the choice of location of the shunt stub in the cascaded chain.
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It is shown that the load resistance decreases monotonically as the
distance of the stub from the generator increases, and it is this
property which permits the realization of a wide range of load
resistance from a given gain function. The method is illustrated by
designs of filters, as well as a new form of broadband transformer in
which the low-frequency response is suppressed by shunt stubs.

I. INTRODUCTION

A. Application of Band-Pass Transmission Line Func-
tions

HE SYNTHESIS of cascaded, lossless, commen-
Tsurate transmission line circuits is well estab-

lished [1]-[11]. The results may be summarized
by stating the necessary and sufficient conditions for the
realizability of such a cascaded line structure [1]: Given
a transmission scattering coefficient si(jB8)) [B is the
propagation constant, I the line length | such that under
the transformation

Q = tan Gl



