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Absfracf-The synthesis of a stepped equal-length transmission

line structure to a given insertion loss function sometimes leads to a
multiplicity y of untrivially related solutions. The philosophy of syn-
thesis is explored to understand thk lack of uniqueness and a new

statement of suliiciency and necessity of synthesis is developed

based only on an insertion loss statement. The conditions are devel-
oped for nonuniqueness to occur and it is observed that these condi-

tions are particularly prevalent in transmission line couplers. It is
precisely the nommiqueness of couplers that accounts for both the

asymmetric and symmetric realizations. The symmetric coupler is
generally the more difficult of the two to design and both exact and

approximate methods of design are given in this case.

I. INTRODUCTION

T

RANSM ISSION line synthesis characteristically

associated with quarter-wave transformers and

band-pass filters [1], [2] has recently been ex-

tended to coaxial couplers [3 ]– [5 ]. In independent

studies of the coupler synthesis problem it became clear

to the authors that the bridge between asymmetric and

symmetric couplers lay in the nonuniqueness of the

synthesis of a transfer function by means of an equal

section length transmission line cascade.

This paper has two major purposes,, Its first intent is

to explore the source of rsonuniqueness and to provide

examples of multiple synthesis. In exploring this source

we shall seek out those criteria which lead to classes

of structures possessing unique synthesis. The second

major purpose of this paper is the further exploration

of realizability criteria towards the end of demonstrat-

ing realizability of all the solutions c)f synthesis. This

investigation leads to the following simple statement of

realizability in terms of cascade transmission line syn-

thesis:

Let 6 be the electrical length of a constant relative impedance

transmission line where all real positive characteristic impedances
are realizable. Then, any even polynomial loss function L (i sin 8)
may be realized as a cascade of transmission lines of equal section
length 0 to within an added terminating transformer if, and only if,
L (i sin 0)> 1 for all real values of 6. The terminating transformer

vanishes when L(O) =1.

The results of the theory show that most of the filter

and quarter-wave transformer designs fall into the class

of structures having unique synthesis. This class, we

find, is characteristic of networks having optimal trans-

mission properties over a band. Couplers, on the other

hand, are designed to produce a wide band of constant
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reflection. It is this feature which produces multiplicity

and accounts for the evo~ution of the two coupler types;

the symmetric and asymmetric structures. “Where flat-

ness of coupling is the major concern, it is shown that

the asymmetric coupler has superior features to those

of the symmetric device. The flat 90° differential phase

of the coupled and transmission ports of the symmetric

coupler give it unique advantages, however, and may be

the dominant feature of design.

The paper has ten sections divided as follows: Section

11 demonstrates synthesis of any even loss polynomial

in sin O meeting the restrictions of the statement of

realizability. Section III proves realizability by a root

locus procedure and an equivalence to positive real func-

tion theory is given in Section IV. Section V explores

multiple synthesis and provides criteria for uniqueness.

Section VI examines the synthesis problem of couplers

and shows the general existence of multiple solutions for

three- or more section structures. It shows qualitative

reasons why asymmetric structures are flatter in cou-

pling than are symmetric structures. Section VII ex-

plores two variants of four-section asymmetric design

and compares differential phase of the twcl qualitatively

and quantitatively. Section VII I deals with the three-

section symmetric coupler and shows that there exists

a three-section asymmetric coupler with an identical

transfer function. Both an approximate and an e~act

design procedure are given. An approximate design is

also indicated for a five-section symmetric coupler.

Section IX takes a concluding look at two aspects of

transmission line structures. The first relates to the

equivalence of filters and quarter-wave transformers

using the realizability statement, and the second is con-

cerned with the applicability of asymmetric couplers to

mixers. Section X contains brief comments about the

literature with respect to some aspects of the present

paper.

The paper will be presented in two parts, the first

containing Sections I through V. The intent is to permit

two self-contained portions; the first dealing, essentially,

with general analysis and the second providing more

specific results.

II. SYNTHESIS PROCEDURE

The synthesis procedure, as well as the demonstration

of realizability, is an extension of that employed in 12].

In that paper an insertion loss function -L was cho,;jen

to be of the form 1 +llnz(sin 0), where R. is an everl or

odd polynomial of degree m Here we shall consider the
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more general problem where L(i sin 0) is any even poly-

nomial function of sin O subject only to the condition

L >1 for all real values of O. The procedure bears re-

semblance to a Darlington [6] synthesis but is modi-

fied by the use of radical factors as introduced in [2].

Let us introduce the complex variable p = i sin $ which

operates for distributed structures in a manner remi-

niscent of the fashion in which P = iti operates for lumped

elements. The insertion loss function L(p) is related to

the reflection factor k(p) as follows:

L(p) – 1
k(p)k(–p) =

L(p) “
(1)

The synthesis method requires that the right-hand side

of (1) be factored into two functions, the first being a

real function of +P and the second being the same

function of – ~.

A simple means of identifying the factors of (1) is

accomplished by a root sorting process. Let pi be a

root of either numerator or denominator. If p, is real,

then the evenness of L(p) requires the existence of the

negative real root. The sorting process requires that P,

be associated with one factor and that – pi be associ-

ated with the other. If p; is complex the demand that

k(p) be real requires a segregation of both pi and pi*

half plane poles in the variable p//l +~z so that all

P~/~11 +Pjz in (4) have negative real parts. There is
no similar restriction on the zeros of k(~) so that the

choice of pi in (4) is unrestricted. It is precisely here in

this choice that transmission line synthesis may be non-

unique. 1

If L(p) is a polynomial of degree 2n then, from (4),

k(p) has the following form:

M.(p) + <1 + p’ N.-l(p)
k(p) =

Pn(p) + <1 + p’ Q.-,(p)
(5)

where it is assumed for the moment that ill, N, P, and

Q are real even or odd polynomials of degree correspond-

ing to subscript notation. Since

(– I)n(lfm(p) – <1 + p’ N.-l(p))
‘(–p)= (– l)n(Pn(p) – <1 + p’ QA(p))

(6)

we ]lave from (1), (5), and (6)

(– 1) ’(MJ(p) + (1+ p’)Nn? ,(p))
k(p)k(-P) = ~_ ~).(~n2(p) – (1 + p2)Q.L@))

L(p) – 1
——

L(p) “
(7)

into one of the factors with the residual roots — p; and
Equation (7) produces the result

–P.” going into the other factor. Equation (1) then de-
Mm’(P) – (1 + P’)fv.<,(p) = (– l)”(L(P)) – 1) (8)composes into

P.’(t) – (1 + P’)QnZ,(p) = (– l)nL(p). (9)

a’~(p –pt) H(– P – Pi)
Equation (5) may be made to yield the impedance* t

(2) function of the terminated four pole through the rela-k(p)k(– P) = ~2~ (p _ p,) ~ (–p – P~)

3 3 tionship Z = 1 +k/1 – k and we find, from (5),

where a’ is a real numeric factor, and where the prod- (l’. + M.) + <1 + P2 (Q.-1+ N.-1) . ~10)

ucts in both numerator and denominator range over all z(p) = —
<1 + P’ (Q.-, – N..,) + (1’. – M.)

permissible independent values of p ~ and p, together

with their complex conjugates. Recognizing the identity Given a transfer matrix

(P – PJ(P + A)

(=(l+p,’) p–<l+p’/!_)
,

( P%. p+til+P’d1+p,2

)

we may make the following identification of k(p) in

(

Pi
+a~v’l+p~ p–<l+ p’=

V’1 + p2 )
k(p) = ‘

(

Pi
antil+pj’ p–til+pz _

j <1 + pj’ )

The motivation in factorin~ (3) as we do stems [

AB

() CD

for a four pole it is well known that the input impedance

(3) to the four pole terminated by a unit load is given by

Z = A +B/C+D. One is then led easily to the tentative

recognition of the transfer matrix to be either of the
(2) : for,n

[

(P.+MJ
T.= _—

(4)
~1+:’(:;;N”-’q (11)

<l+p’ (Qn_,– Nn_,) . .

or of the form

rom
T = /l+p2 (Q.-l+N_l)

[

(Pn+MJ
-..

1
. (12)

the desire to produce polynomial functions in terms of
n

(Pn – M.) ~1 +p’ (Q.-l– N.-,)

both sines and cosines of some transmission line length.

If P=; sin 0, then ~1 +02 =COS O and (4) will be shown

to represent the reflection of a transmission line cascade. ~ These features result directly from a root locus procedure. Ac-
tually, no direct appeal need be made to PRF theory, but corn.

Network stability [7] requires that k(p) have only left- patibility with it is established in Section IV.
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The determinant of T. in (11) is

(Pn’ – M.’) – (1 + &)(Qnz, – Nnl,) = (– 1)” (13)

where the equality stems from (8) and (9) and the de-

terminant of Tn in (12) is ( — l)”+l. Since the determin-

ant of the transfer function of a reciprocal four pole is

unity, (11) is to be identified with a structure having an

even number of elements while (12) corresponds to an

odd element structure. This identification is also appar-

ent from the requirement that major diagonal terms be

real and minor diagonal terms imaginary.

Equations (11) and (12) do indeed possess the neces-

sary form for n-element transmission line structures.

Recognizing that a single transmission line of character-

istic impedance Z possesses the transfer matrix

(14)

it is evident that (11) and (12) go into one another via

matrix multiplication with (14), corresponding to the

addition of another section to the four pole. Since (12)

and (14) correspond for n = 1, proof by induction is com-

plete that (11) and (12) have the proper form to repre-

sent an equal-length transmission line cascade.

Given an appropriate insertion loss function we shall

now demonstrate the synthesis method. We arbitrarily

take n odd and expand (12).

We may continue the procedure of removing trans-

mission lines until n = O for which we ob Lain

()a. o
T, =

O d,
(19)

and which clearly represents a transformer since aodo = 1.

If as a special assumption we require that L(O)= 1,

namely that there is no reflection when the transmission

lines are of zero length, then aO = do and synthesis may

be accomplished by transmission lines only,,

III. R~~MZ~BILITY

It was assumed, in relation to (5), that M., N.-l, P.,

and Q.–1 were all real polynomials and that there had

been no cancellation of common factors between nu)ner-

ator and denominator. Because it is necessary thai the

various matrix terms of (11) and (12) be real in ~, we

are obliged to show that this assumption is, indeed, cor-

rect. To do this we shall now state and prove two prop-

erties of the loss function under the two assumptions

that L(p) >1 for I p] <1 for p on the imaginary axis

and that L(p) be an even polynomial. These assump-

tions follow, respectively, from conservation of energy

and reciprocity.

A) The number of real roots’ of L(p) and Z@) – 1

differ by a multiple of four.

B) The leading coefficient of L(p) has the sign

(– 1)”~/Z where n, is the number of real roots of

either L(p) or L(p) – 1.

T = <1 + p’(a._@n-’ + an-qp”-’ + . ~ ~ )

[

bnpn + bn-qr’ + . . .
n

1
(15)

Cnp” + cn_2p”–2 i- . . . ~1 + &(dm_@n-’ + d,,_,p”-’ + . . . ) “

Assuming n> 1 the leading term of tlhe determinant of

(15) is zero since the determinant is identically unity.

Hence

a.–ld.–l — bmcn = 0, ?L > 1. (16)

If (15) implicitly contains n transmission lines, we

may remove one by appending a line length —8 on the

left having some characteristic impec[ance Z. Perform-

ing this operation on (15) we have

To prove property A consider the loss function

L(P) – a, where a is a constant which ranges in value

from zero to a maximum of one. For a <1 tlhere are no

roots on the imaginary axis for I @I <1 by assumption.

There are two possible ways in which roots may leave

the real axis as a varies:

a) The roots on the real axis merge in pairs and then

enter into the complex plane to form ~quartets of

complex roots (i.e., pi, p,*, –p:, –p,*’).

‘n-’=[~~i(~’:~;n~::n-’)l (dn-l-afn+’+o(p-’) 1“

<1 + p’[(bn – Zdn-,)fn + O(pn-’)]

(17)

In view of (16) a choice of b) The roots pass from the real to the imaginary axis

through the point at infinity.
a.-l

Z= —=J: (18) This last mechanism, however, is absurd since a root
c. an-l

passing through the point at infinity implies a vanishing

provides for the reduction of the respective components of the leading coefficient of L(P) — a as a varies.

of T.–1 to polynomials of one degree less than those for

Tn.
z Roots at zero are considered real roots in all subsequent dis-

cussions.
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The first mechanism of real root loss is, therefore, the

only permissible one for a less than, and arbitrarily

close to, unity. For a =1, even clusters of roots may ap-

pear on the real axis at the origin since roots of L(P) – 1

are permitted on the imaginary axis for I P I <1. How-

ever, this does not constitute a real root loss. Since the

only mechanism of real root loss is through complex root

quartets, property A is proven.

Property B is also simply demonstrated. Since L(P)

is an even polynomial it has the representation

L(p) = ~ K(p’ – a?) (@ + bj’) (p’ – C.k’)(p’ – ck*’)

itj,k

where a~ are the real roots, ibj the imaginary roots, and

ck the complex roots. As a particular case of the assump-

tions on L(p), L(O)> O. This requires that K have the

sign ( — 1)”’12 where n, is the number of real roots.

We may now prove the desired result that the various

polynomials in (5) are all real. In considering either

numerator or denominator in (4), there are no complex

terms introduced by a complex root Pi since there is al-

ways present another root P~* to restore reality. In the

particular case of the numerator, roots along the im-

aginary axis for I P ] <1 are formed from a double set

because of the non-negative nature of L – 1 for that

region. It is thus possible in sorting out the respective

roots of k(~) and k( — P) to assign one such imaginary

root and its complex conjugate to one of the factors and

the other pair of roots to the other factor.

Equation (4) becomes imaginary with the introduc-

tion of those imaginary roots in either numerator or

denominator for which I p I ~ 1. Since these roots are, in

general, simple there is a root assignment of one im-

aginary root to k(j) and its negative to k( — p). These

roots are now unpaired and lead to imaginary coeffi-

cients in (4) since <l +@;z is imaginary. The complete

coefficient is real or imaginary in relation to the number

of pairs of imaginary roots for which I P I ~ 1. In par-

ticular either numerator or denominator of (4) is, re-

spectively, real or imaginary as is the quantity

~~(nrnio/2

where ni is equal to the total number of imaginary roots

and where n{ is the number of imaginary roots for

Ipl <1. Recalling that imaginary roots I PI <1 are

double and are paired with their complex conjugates,

n,’ is a multiple of four. Further, from (2) and proper-

ties A and B, the leading coefficient of either numerator

or denominator has the same sign as

sgn (–l)%’ = (– 1).,/2

where, unambiguously, nr is the number of real roots of

either numerator or denominator. Taking all the above

into account, either numerator or denominator is real

or imaginary as is the quantity

(- ~)(2n+w+ni)/4.

Since n,+ni = 2rz (mod 4) we obtain the final result that

both numerator and denominator are real. Hence, M.,

Nn_l, P., and Q~_I are all real polynomials.

Applying the matrix reduction technique associated

with (17) one may now find an array of characteristic

impedances which correspond to the insertion loss func-

tion within a transformer. Since all of these impedances

are real, the demonstration of realizability becomes that

of showing that all the impedances are positive. We

shall employ a root locus procedures to show realizabil-

ity similar to that employed in [2].

The root locus procedure starts with the root loca-

tions of a structure which is known to exist. Always

maintaining the fundamental condition that L(p) — 1>0

for imaginary roots I PI s 1, the roots of L(p) – 1 are

varied continuously from that array corresponding to

the existing structure to that array corresponding to the

loss function to be synthesized. If a continuous locus

exists and if the structure is continuously realizable

along the root locus, then the synthesis is realizable.

Certainly an n section structure exists giving us an

admissible array of roots corresponding to some L(P)

– 1, Let us now consider root loci of L(p) – 1 which are

restricted as follows:

1)

2’)

3)

4)

All roots maintain reflection symmetry about both

real and imaginary axes.

Roots traveling on the imaginary axis for I PI <1

must remain paired (double).

Roots on the imaginary axis for I ~ I ~ 1, or real

axis roots, may be simple.

Roots of any multiplicity maybe interchanged be-

tween the real and imaginary axes through the

point at infinity.

Through the preceding rules one always maintains the

evenness of the polynomial L(p) together with a single

sign of L(P) — 1 on the imaginary axis for I p I <1. It is

also evident that every consistent root pattern of L(p)

– 1 is permitted by the foregoing loci.

It is implicit in the preceding that the sign of the lead-

ing coefficients of L(p) — 1 will always be maintained

equal to ( — 1)”’12. There is no discontinuity in changing

this sign as roots pass through infinity since such roots

imply a vanishing of the leading coefficient of L(p) to

a degree consistent with the multiplicity of roots hav-

ing passage. Hence L(p) — 1 remains non-negative on

the imaginary axis for I p I <1 for all possible loci.

We have shown that admissib~e loci exist maintaining

both the even and non-negative character of L(p) – 1

which carry us from the root array of a physically exist-

ing structure to the root array for a specific L(p) — 1.

We may, therefore, continuously construct an array of

real characteristic impedances according to (17) where,

~ Root locus procedures find frequent application in control
theory. See, for example, J. G. Truxal, Automatic Feedback Control
System Synthesis. New York: McGraw-Hill, 1955.
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at Ieasti in the neighborhood of the initial points of the

loci, every impedance is positive. If one or more im-

pedances change sign along the root loci, each must

first pass through a value of zero or infinity. It is easily

shown that no multiplicity exists of zero or infinite

characteristic impedance sections which may produce

other than an infinite insertion loss for finite values of ~.

Since this contradicts the finite polynomial nature of

L(p), there may be no sign changes, and the network, is

realizable.

We have now established the sufficiency of the syn-

thesis procedure and it remains for us to demonstrate

that this procedure exhausts all possible syntheses. We

have shown in Section II by an inductive proof that (1 1)

and (12) represent the necessary matrix forms for an

equal line length structure. Equatiorl (13) describing a

unit determinant condition is necessary from considera-

tions of reciprocity. Equation (9) describing the loss

function is a direct consequence of (11) or (12), and (8)

derives directly from (9) and (13).

Either (8) or (9) may be written in the form

(A.(p) + <1 + p’ B.-1(p))

“ (A.(p) – dl + p’ IL-l(p)) = F2n(p)

where Fsn is an even polynomial of degree 2n. Trans-

form to the variable ~= v’(I +p2)/~ so that we have a

new equation of the form

(0%(.?) + /%-1(0)(%({) – B.-N)) = 42.(1)

where an, 13fi_l, and 42. are appropriate odd or even poly-

nomials, respectively. Since the linear factors of oz. are

unique, only a finite number of organizations of n factor

pairs are permissible compatible with the form of the

left-hand side of the equation, The left-hand side is the

product of complex conjugate factors of degree n and

synthesis of (11) or (12) requires that just one of these

factors be chosen. The synthesis procedure employed

exhausts all permissible arrangements of the n linear

factors, and no other synthesis is possible.

IV. CONNECTION WITH I?RF THEORY

A root locus demonstration of realizability was em-

ployed in the Section 11 I because it tied the examina-

tion of realizability to the loss function itself and be-

cause it meaningfully retained the variable @= i sin 6 in

which the problem is specified. One is, then led to direct

statements about the admissibility of the loss function

itself, namely the function specified for synthesis, as

opposed to statements relating to impedance functions

in a new variable ~ = —i cot O as is required by Richards’

theorem [7] and the use of positive real function theory.

We shall show, nevertheless, that the root locus

demonstrations employed are consistent with PRF the-

ory. It is to be recalled that the root locus method re-

quired some initial structure to establish an initial root

array for L(p) — 1. Let us start with an n section equal

impedance cascade structure which has the transfer

matrix

1
Cos ?20 iZ sin nO

T=

1

(20)
i

sin nt? cos no
(2 J

and which, with a unit termination, produces the reflec-

tion factor

“( )~ Z–: sinn9

k= —.

1

“( )

(21)

cos VU9+ ~ Z + ~ sin ~te

Let us consider the poles of k which correspond tc] the

choice of appropriate roots of L(p) in (4). The poles em

are found from the equation

(22)

From (22) we obtain

\ l/n

Z+; –2

~i2um/n +1

Z+; +2

{m=–icOtem=— — (23)
. 11?,

Z+; –2

~i2rm/n –1

Z+; +2
(

where m is an integer. From (23)

2/n

Z++–2

–1

Z+++2

Re (r~) =

11

1[n
, <0 (24)

Z+; –z

~i2rm/n –1

Z+; +2

so that all poles of k are in the left hand of the ~ pllane.

In terms of the variable ~ the quantity ~ is given as

(25)
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~ is imaginary for that range in which @is imaginary and

I p] <1. Since this is exactly the range for which L(P)

~ 1, there may be no roots of L(p) and, consequently,

no poles of k on the imaginary f axis as the roots of

L(p) – 1 trace their respective paths. Since the point at

infinity of ~ corresponds to P = O where, again, there is

no root of L(p), k may have no poles in the ( plane ap-

proaching infinity. The poles of k in the f plane which

were initially all in the left-half plane are trapped in the

left-half plane since they may not leave either through

the imaginary axis or the point at infinity,

The imaginary ~ axis, as indicated, corresponds to the

range w > L >1 so that

lkl’=~<1. (26)

Since k is analytic in the right-half plane and has a

magnitude less than 1 on the imaginary axis, it has a

magnitude less than 1 everywhere in the right-half

plane. Thus Z =(1 +k)/(1 – k) is a positive real func-

tion for all admissible root locations of L – 1.

Inverting (25) we find @= l/v’~2-l. Substituting in

(10) and multiplying numerator and denominator by

(~’– 1)~/2, we find

2)

3)

THEORY AND TECHNIQUES May

With the exception of imaginary roots for which

I PI >1, the roots of k(@) and k(-p) have a, mu-

tual reflection symmetry about the imaginary

axis.

For every imaginary root in k(p) a complex con-

jugate root is to be found in k( –p).

The selection rules do not enforce a unique choice by

any means since one may take any root Pi, and its con-

j ugate if needed, and exchange it with its negative — pi.

Root locus considerations as employed earlier show that

realizability is not compromised and the loss function

remains invariant,

Since nonuniqueness is the rule and not the exception

we should like to seek the cases in which root inversion,

namely the transformation of Pi to — pi, leads either to

trivial change, or to no change at all, in structural syn-

thesis. In a first examination all the roots of k(p) are

inverted and we seek to determine the effect. In a second

study we shall attempt to determine under what cir-

cumstances a network is insensitive to the inversion of

any number of the roots of k(p).

.4. Complete Root Pattern Inversion

While it might be supposed that the transformation

~(f) = (J-2– l)n/2(~?l + M.) + m-’ “- 1) +1)/2(Qn-l + N.-1)

-W’ – 1) (n-’) /2(Qn-l – J~n-1) + (r’ – l)n’’(~n – ~n) “

(27)

Letting ml,2 stand for a real even or odd polynomial in

~ and nl,z stand for an odd or even polynomial, (27) has

the form

ml + ?21
z(f) = ~

mz + Tz2

From the unity determinant condition of (13)

mlmz — nlrzz = (— l)”~(~z — 1)” (28)

where C is any real number multiplying numerator and

denominator of (27).

Z(r) is, therefore, positive real and, by (28) also meets

the second of Riblet’s two conditions for cascade trans-

mission line realizability [1]. Since every root array

corresponding to the loci of L(p) — 1 leads to a realizable

structure, the endpoints of the loci are also realizable,

completing the statement of realizability.

V. MULTIPLICITY IN Loss FUNCTION SYNTHESIS

Network determination corresponding to a given loss

function depends on the specific choice of half the num-

ber of roots of L(p) – 1 to form the reflection function

k(p). The roots chosen obey the following selection con-

ditions.

1) With the exception of imaginary roots for which

I PI >1, the roots of k(p) have reflection sYm-
metry about the real axis.

of a root pattern of k(p) to one having an inverted pat-

tern might lead to trivial results, this is not necessarily

the case. Let us consider the transformation in which all

roots of k(p), p ~, transform into their negatives. The

numerator of (5) becomes

(–l)”(if’fn(-p) + <1 +92 N.-1(–P))

= M.(p) – <1 + p’ N.-,(p)

and is characterized by the transformation N.–l(p)

- — AT_l(p). Equation (12) shows that a change of sign

of Nfi_l(p) interchanges the major diagonal terms for n

odd, while the minor diagonal term of (11) interchanges

for n even. As we shall show now, this shifting of matrix

terms implies that total root inversion reverses the odd

section structure and produces the reverse dual of the

even number section structure.

Since k(p) is defined by the square of its magnitude,

it is indeterminate to within a minus sign. A reflection

function – k(p) corresponds to the dual of the structure

corresponding to k(p), where the dual interchanges the

roles of electric and magnetic fields. If electric and mag-

netic fields transform into one another, then the terms

of the dual transfer matrix is obtained by an inter-

change, respectively, across both diagonals; A i#D,

B@C. A network reversal only interchanges the major

diagonals so that A @D. A minor diagonal interchange

then corresponds to the reverse of the dual.



1965 Seidel and Rosen: Multiplicity in Cascade Line Synthesis

If the original root pattern provides a given net~vork

and its dual then, irrespective of n even or odd, com-

plete root inversion provides both the network reverse

and reverse dual. Let it be assumed that the prototype

network contains a terminating trans [ormer N. If we

recognize the transformation which carries a trans-

former from the left of an impedance array to the right

of the array by multiplying each characteristic imped-

ance by the square of the transformer value, we have the

results of Fig. 1.

It is all but trivial that an array of transmission lines

of a given characteristic impedance has the same inser-

tion loss as an array having the identical values of ad-

mittances, and it is similarly trivial that a network un-

der reversal has the same insertion loss as the forward

network. In the case of N = 1, therefore, no information

of major value is contained in the inverse pattern over

that of the original pattern.

The case of N# 1 is, however, of more important

interest. The networks containing terminating trans-

formers are all filters possessing the same loss character-

istics. The transformer combined with the load repre-

sents a mismatched termination, and the array of trans-

mission lines preceding the transformer represents a net-

work providing a specified insertion loss function from

the generator into a mismatched load. In viewing both

the original network and the reversed dual network of

Fig. 1 one observes, in general, two entirely different

transmission line networks providing the same transfer

function for all frequencies into the saline mismatched

load.

Under certain circumstances the network and its re-

versed dual might be identical. JTre now ask what these

conditions are. The transfer matrix of the reverse dual

differs from that of the prototype network by a reversal

of minor diagonal terms. Since the two d ascriptions must

be identical we find from (11) and (12)

N,,_ I = O; n even

M. = (); fZ odd

L = 1 + Mfi2(p); n even (29a)

L = 1 + (1 + p2)NJ,(#); pZodd. (29b)

Equations (29a) and (29b) are phrased in polynomials

M= and N.–I which are both even. FLecognizing that

1 +Pz = COS2 O both (29a) and (29b) may be combined

to yield as the necessary condition of network identity

L = 1 + &2(COS ~) (30)

where R. is either an even or an odd polynomial of de-

gree n.

It is simple to understand why (3o) provides the

identity of the network and its reversed dual. Since all

the roots of L — 1 are double it is possible to factor

] k(~) I ‘ into identical factors each containing all the
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Fig. 1. Networks corresponding to initial and
inverse patterns of k(p).

roots of R.(cos 8). Since R. is either an odd or even poly-

nomial, for every root in a factor its negative is con-

tained as well. Hence root inversion leaves k(p) invaria-

nt to within a sign change if k(@) and k( -–p) have

identical roots.

We define a root pattern of L – 1 to be “basic” if it is

defined to within an inversion through the origin. If

L – 1 has no roots at the origin then N# 1, ancl we have

previously shown that a basic pattern implies two stru c-

tural realizations. However, these realizations merge un-

der the restrictions that L(p) – 1 have double roots and

that k(p) and k( — p) be made to have identical roots.

Figure 2 shows a double root pattern of L --1 which,

for case (a), leads to identical roots for k(p) and k( – p)

and, thus, in turn leads to unique realization under root

inversion, while case (b) leads to nonunique realization.

It is of interest that past realizations only have con-

sidered loss functions for a quarter-wave transformer of

precisely the form L = 1 +R,,2(cos 0) with identical root

assignments to k(p) and k( —P). Figure 1 shows an in-

version symmetry of the characteristic impedances of a

quarter-wave transformer, seen in comparing the original

network w~ith its reversed dual, where

Zkzn–k+l = N2. (31)

Equation (31) is seen to apply precisely to Fig. 10 of [2! ].
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B. Unique Synthesis

Having observed invariance for one basic pattern

under root inversion, we next seek to determine under

what circumstances the basic patterns themselves are

identical. If the basic patterns are identical then there

are, at most, two essentially different structures. Further,

if the single basic pattern is invariant along the lines

discussed, then there is a unique realization.

Given a basic pattern we may shift to another basic

pattern by causing any one root ~, to transform to its

negative. Simultaneously P,* transforms to its negative

if P%* is contained as a root within the pattern. The

simultaneous transformations p,- — P, and o,*+ — j;*

lead to identity only if ~i = –pi*j which implies that

~, is imaginary. Further \ p, I <1 if both the root and

its conjugate are to be contained in the same factor k(p)

for reasons given in Section I I 1. Since ~, = t i is the point

at infinity in the transformation P,/v’l +p,z, a trans-

formation of pi= i into its negative also leads to iden-

tity.

Assume for the moment that the single roots p;= ii

are not contained in L — 1 so that there are only double

roots on the imaginary axis for — 1< — ip < +1. There-

fore, L – 1 XF%’(p), where F. is an appropriate nth de-

gree polynomial. lf the roots Pi= ~ i are contained in

L – 1, then L – lN(l +@z) F’n-l(p). Both of these results

may be phrased alternatively as follows:

L = 1 + Rn’(sin 0) (32a)

L = 1 + &2(COS 6) (32b)

where R~2 is an even polynomial of degree 2n and where

there are n roots of R. contained in the interval – (7r/2)

<e<(T/2).

We shall now associate (32a) with filters and (32b)

with quarter-wave transformers. For n even, there is n o

clear distinction between (32a) and (32b) since sin 0 and

cos 6 occur to an even degree and are interchangeable.

The case of n odd is, however, clearly distinguishing. We

define a filter structure to be composed of an array of

transmission lines without a terminating ideal trans-

former or, at worst, with a transformer close to unity

turns ratio to account for a small center-band mismatch.

A filter structure is, therefore, characterized by the con-

dition that L = 1 for O= O, to which only (32a) applies

in general for n odd. A quarter-wave transformer, on

the other hand, has a terminating ideal transformer

which represents the load mismatch and is character-

ized by a Iossless transformation at 6 = 900. Clearly, only

(32b) applies in general for n odd.

Equation (32 b), by its very construction, has identi-

cal roots for k(p) and k ( — -p) and, since it falls into the

form of (30), it can yield only one quarter-wave trans-

former construction. If we consider the mere reversal

of a structure to lead to identity, then (32a) shows a

unique filter construction for n even and a double real-

ization for n odd. This result is obtained as follows. The

double imaginary root structure of L – 1, with all roots

lying in the domain I p I <1, leads to Nn_I(P) = O in (4).

Equation (11) shows the even section filter to be identi-

cal to its reverse dual, while (12) shows the odd section

filter to be symmetric. Since the dual of the even struc-

ture leads to a simple reversal, no new structure results

from dualization so that the even section filter is unique.

The dual of the odd section filter is, however, a differ-

ent structure, so that there is a double realization in

that case.

‘With the exception of the Gaussian response func-

tion, the usual treatment in the literature on filters and

quarter-wave transformers relates to the design of

Chebyshev and Butterworth responses. The Chebyshev

polynomial has n roots over the range of – (7/2) ~/3

~ (r/2) while the Butterworth synthesis of L – 1 con-

centrates all roots at the origin. From the preceding

discussion we observe that these are exactly the condi-

tions for unique synthesis and account for the failure to

describe multiple realizations in the literature. Coupler

design, as we shall observe in Part II, requires com-

pletely dissimilar design premises to those of the filter

and quarter-wave transformers, and the nonuniqueness

of synthesis is most pertinent.

C. Invariant Properties or Multiple Synthesis

We have examined situations in Sections V-A and

V-B in which synthesis was insensitive to some degree to

ro,ot inversion. It is of interest, however, that two invari-

ant features persist in all multiple syntheses irrespective

of how radically they may differ.

1) The complex transfer function is invariant to root

choice.

2) The terminating ideal transformer is invariant to

the basic root pattern so that a quarter-wave

matching transformer may be equally well con-

structed from any of the basic patterns.

The transfer function invariance is deduced through

the relationship I t(p)[‘2=1/L(p), where t(p)is the trans-

fer function. Equation (5) shows that

1
t (p) =

p.(p) + til + p’ (&l(p) “

(33)
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It is to be recalled that the denominator of (33) is

formed of radical factors of those roots of L(p), p,,

which correspond to a negative real part of p~/v’l +@lz.

Since these roots are, in turn, the poles of k(p) which

remain fixed irrespective of the choice of the roots of

k(p), (33) is invariant to all structures having the same

insertion loss function.4

IhTe next show the terminating transformer invari-

ance. lkrith respect to Fig. 1 we find that a specification

of a terminating transformer in a basic pattern implies

the existence of the inverse transformer as well. The

terminating transformer is found from the insertion loss

for 0 = O and is given through the relationship

()
1,2

4(1,(0) – 1) = A’ – —
AJ,

(34)

4 Equation (33) is tantamount to a minimum phase statement.
Since L(P)+ cc as p+ m, the transmission function t(p) vanishes
for ~= 1 in the .? plane. One cannot, therefc,re, make any direct
minimum phase statements because of the nonanalyticity of In (t) in
the right-half ~ plane.

so that the transformer is specified to within an inverse.

Since the insertion loss is the invariant specification to

all the multiple syntheses, the transformer is an invari-

ant to the basic root pattern. One may, therefore, always

construct at least one quarter-wave transformer work-

ing into the same real impedance N2 for each basic

pattern.
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Direct Synthwsis of Band-Pass Transmission

Line Structures

H. J. CARLIN, FELLOW, IEEE, AND W. KOHLER, STUDENT MEMBER, IEEE

Absfracf—Realizable band-pass (zero of transmission, i.e.,
infinite loss, at dc) equiripple gain functions are constructed which

permit exact physical realization of systems consisting of cascaded
lines and stubs. The problem of the realization of a prescribed load
resistance is solved when a dc zero of transmission is present due to a
shunt short-circuiting stub. The exact Itilts of realizable load resis-
tance are given for equiripple band-pass gain functions and a straight-

forward method is presented to synthesize any desired value of load

between the predetermined limits. The basis of the synthesis tech-

nique is the choice of location of the shunt etub in the cascaded chain.

It ie shown that the load resistance decreases monotonically as the

distance of the stub from the generator increases, and it is this
property which permits the realization of a wide range of load
resistance from a given gain function. The method is illustrated by

designs of filters, as well as a new form of broadband transformer in

which the low-frequency response is suppressed by shunt stubs.

1. INTRODUCTION

A. A @plication of Band-Pass Transmission n Line Ftinc-

tions

T
HE SYNTHESIS of cascaded, lossless,, commen-
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